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Abstract-A solution to the frictionless contact of rigid flat indenters on arbitrarily layered, aniso
tropic half planes is obtained using Fourier transforms and the local-global stiffness matrix tech
nique. The local-global stiffness matrix method involves reformulating the problem in terms of
interfacial displacements as the basic unknowns, and has been shown to be an efficient method for
solving mixed boundary-value problems of laminated media. The contact problem of a rigid punch
gives rise to a mixed boundary condition of known displacement gradient and unknown pressure
distribution in the contact area. This mixed boundary condition is reduced to a singular integral
equation involving the unknown pressure using the asymptotic properties of the global stiffness
matrix. A solution for the contact pressure distribution is then obtained from the singular integral
equation using a technique provided by Erdogan, which involves the use of orthogonal Chebychev
polynomials. The results are employed to determine the boundaries between full and two-region,
and full and three-region, contact solution zones in separation parameter spaces that illustrate the
effect of geometric and material parameters on the incipient separation between a flat punch and
the top layer of a half plane laminated with isotropic, transversely isotropic and monoclinic plies.

INTRODUCTION

Frictionless contact problems of layered media have been studied extensively within the
framework of linear elasticity. Recently, an efficient method of solving this class of mixed
boundary-value problems has been developed. The local-global stiffness matrix method,
employed by Pindera (1991) and Pindera and Lane (l993a,b) to solve round punch contact
problems of arbitrarily laminated media, is based on a flexibility matrix approach outlined
by Bufler (1971). Rowe and Booker (1982) later reformulated this approach in terms oflocal
stiffness matrices and applied it to non-homogeneous isotropic layered media. Chatterjee et
al. (1982) and Chatterjee (1987), used the method to solve interlaminar crack problems in
anisotropic layered media. Most recently, Binienda and Pindera (1994) employed this
technique to discuss differences and similarities in the response of metal matrix and poly
meric matrix composite half planes indented by frictionless parabolic punches.

The frictionless contact problem is typically reduced to a singular integral equation for
the unknown pressure distribution in the contact region using the surface mixed boundary
conditions involving zero tractions outside the contact region and the constraint on the
surface displacement provided by the punch profile inside this region. The solution for the
unknown pressure distribution requires separation of the kernel in the integral equation
into singular and regular parts. As discussed by Pindera and Lane (1993a), the local-global
stiffness matrix approach naturally facilitates decomposition of the integral equation into
singular and regular parts for an arbitrarily layered half plane comprising any number of
layers. This decomposition utilizes the asymptotic behavior of the local, and thus global,
stiffness matrix in the Fourier transform domain and a relation between Fourier and finite
Hilbert transforms ofthe contact pressure. The resulting singular integral equation possesses
a Cauchy-type kernel and is amenable to treatment by a collocation technique based on
the properties of orthogonal polynomials outlined by Erdogan (1969) and Erdogan and
Gupta (1972).

In this paper the authors briefly outline the development of the local-global stiffness
matrix method, and show how it can be applied to study the contact response of a flat
punch on an anisotropic layered half plane. The solution for the contact pressure predicts
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complete contact between the punch and the half plane for only a limited range of geometric
and material parameters. Outside this range separation occurs in either one or two areas of
the contact region. This local separation phenomenon was first investigated by Shield and
Bogy (1989) for isotropic configurations using a transform matrix technique. Here a
generalized plane deformation formulation is employed which allows separation to be
studied with regard to configurations consisting of anisotropic composite plies. The focus
of this paper is the effect of off-axis ply orientation and material property mismatch between
the composite plies and the supporting half plane on the boundaries between full and two
region, and full and three-region, contact solution zones in separation parameter spaces.
The separation parameter spaces illustrate the effect of fiber volume fraction, fiber orien
tation and geometry on the incipient separation phenomenon.

PROBLEM FORMULATION

The laminated half plane shown in Fig. I consists of an arbitrary number of discrete
layers bonded to a homogeneous supporting half plane, and is indented by a rigid flat
punch. The half plane can be laminated with any combination of different materials
arranged in any stacking order. Isotropic, orthotropic and off-axis (monoclinic) layers are
admitted in the formulation. Inclusion of monoclinic materials renders the model ideally
suited for the analysis of off-axis fibrous composites. The layers are numbered from k = I
to n, where I and n designate the top layer and the homogeneous supporting half plane,
respectively. Local Cartesian coordinate systems (x-y-z), are centered in the midplanes of
the layers with the z-axis directed opposite to the applied load. By definition, the layers
extend to infinity in the x-y plane. Expressions are developed which relate the stresses on
the top and bottom of the individual plies to the corresponding displacements, and are
grouped into local stiffness matrices. These local stiffness matrices are then assembled into
a global stiffness matrix using interfacial continuity of tractions and displacements.

The displacement formulation of linear elasticity is employed and generalized plane
deformation is assumed, where the three displacement components, U, v and w, are functions
of only the x and z coordinates. Combining constitutive relations and the strain
displacement equations with the equations of equilibrium provides the Navier equations,
which govern the functional form of the three displacement components. For a monoclinic
layer these three partial differential equations are coupled in u, v and w, and have the
following form,
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Fig. I. Arbitrarily laminated half plane constructed with isotropic, transversely isotropic or
monoclinic layers.



Frictionless contact problems 2447

(I)

where Cijs are the elements of the elastic stiffness matrix referred to the global coordinate
system. The governing equations for orthotropic and isotropic layers have similar form but
are uncoupled in the y-direction and can be obtained from eqn (I) by setting
C16 = C45 = C36 = o. These governing differential equations are solved for each individual
layer subject to the appropriate boundary conditions. Due to indentation by the flat punch,
the top layer is subject to mixed boundary conditions. The displacement gradient in the
contact region is governed by the profile of the punch, the tractions outside the contact
region are required to vanish, and because the contact is assumed frictionless, there are no
shear traction components on the top surface,

d
dx WI (x, +hd2) = 0 Ixl < C

(1:: = 0 Ixl > c

(J.,: = (Jy: = 0 Ixl ~ o. (2)

The individual laminae of the composite structure in Fig. I are assumed firmly bonded
together with no separations. Therefore, the traction and displacement components across
the interface between two adjacent layers are continuous,

uk(x, -hk/2) = Uk+ 1(X,hk+ 1/2) i = x,y,z

(17z(x, - hd2) = (17z+ I (x, hk+1/2) k = I, ... , n (3)

where kdesignates the layer number, Uk = (Wk> Uk> Uk) is a vector ofinterfacial displacements,
and ~ = ((J~z>~:, 0-;:) is a vector of interfacial tractions.

The solutions to the governing equations provide expressions for displacements
throughout the individual layers. To obtain these solutions, infinite Fourier transforms are
applied to reduce the partial differential equations to ordinary differential equations that
are functions of z and the transform variable s. The transformed ordinary differential
equations are subsequently solved using standard techniques.

SOLUTIONS FOR MULTILAYERED MEDIA

The solution of the governing differential equations in the transform domain provides
the functional form of the displacement field in a given layer in terms ofFourier coefficients.
Differentiation and application of constitutive law subsequently provides the functional
form of the stress field (also in terms of Fourier coefficients). Expressions for displacement
and stress components have been provided by Urquhart (1993). The problem is then
reformulated by algebraically expressing interfacial tractions in terms of interfacial dis
placements, thereby eliminating the Fourier coefficients and constructing a local stiffness
matrix for a given layer. A local stiffness matrix for a monoclinic layer has the form,

SAS 31:18-8
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where the" +" and" -" superscripts refer to the top and bottom of the layer, respectively.
The elements k;j for isotropic, orthotropic and monoclinic laminae have been provided by
Pindera (1991), and are functions of a layer's material properties, thickness and the Fourier
transform parameter s. In the case of an orthotropic or isotropic layer, the elements k 13
k 16, k 23 , k 26 , k 34 , k 3s , k 46 and k S6 vanish. Having determined the local stiffness matrices for
each layer, a global stiffness matrix is assembled by observing interfacial continuity and
boundary conditions. This assembly process is facilitated by rewriting eqn (4) in symbolic
form as follows,

(5)

where Vl is the displacement vector on the surface of a ply, Tl is the corresponding
traction vector divided by the Fourier transform parameter s, and the elements Kt are 3 x 3
submatrices of the local stiffness matrix. The interfacial continuity conditions of eqn (3)
require the sum of the tractions acting along the kth interface to be zero, i.e.

T;;+T:+ 1 =0 k= l, ... ,(n-l). (6)

Equation (3) also ensures that the displacement on the bottom surface of a layer is equal
to the displacement on the top surface of the layer directly underneath,

Vk = V:+ 1 = Vk+1 k= l, ... ,(n-l). (7)

The system of equations that comprises the global stiffness matrix is obtained by starting
with the top surface, where the unknown traction in the contact region is represented by
Ti, and then applying eqn (6) to each interface using eqn (7) to eliminate redundant
interfacial displacement terms (eliminate the V;; terms),

top layer: Ti = KLv1+KLV2

kthinterface: 0 = K~lVk+(K~2+K1il)Vk+1 +K1i I Ok+2

supporting half plane: (8)

where n is the total number of layers including the half plane and K~t is the local stiffness
matrix for the supporting half plane. The elements of the local stiffness matrices for half
planes also have been provided by Pindera (1991). The assembly of the global stiffness
matrix for the entire layered medium is carried out, according to eqn (8), by superposing
individual local stiffness matrices along the main diagonal of the global stiffness matrix in
an overlapping fashion,
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KL Kl 2 0 VI tt
KL (KL +Kfl) K12 V2 0

0 ~I (~2 +KL) (9)

0 0 K~I

0 (K~21+Km
Vn 0

Since continuity of interfacial displacements is enforced directly through eqn (7), the
above procedure results in a reduction in the number of unknowns through elimination
of the redundant continuity equations that are retained in the standard approach. In
configurations with many layers, formulating the problem in terms of a global stiffness
matrix results in almost a 50% reduction in the number of unknowns, thus substantially
reducing subsequent computational effort.

FORMULATION AND SOLUTION OF THE SINGULAR INTEGRAL EQUATION

By inverting the global stiffness matrix, the interfacial displacements are related to the
applied tractions, and since the only traction component is the normal contact pressure on
the top surface,

{

W_t!i} [HII
U HI2
VI H I3

• •

H12 H I3

H22 H23

H23 H33

• • ~l rn (10)

where Hij are the elements of the inverse of the global stiffness matrix in eqn (9). Conse
quently, the relationship between the normal displacement and the applied traction on the
top surface involves only the H ll term,

where a;z(s) is the transform of the contact pressure, p(t), given by,

I Ic .a;z(s) = M: p(t) e1st dt = jj(s).
V 2n -c

(11)

(12)

Imposing the displacement boundary condition, eqn (2), over the contact region we obtain
an integral equation involving the unknown contact pressure p(t),

d~Wl = ~ I+co sW I e- isx ds = ~: I+co Hll(s) [IC p(t) eist dtJe- isx ds = O. (13)
V 2n -co -co-c

The above integral equation is singular because as s approaches infinity, H II (s) does
not vanish. The singular nature of the kernel can be identified by considering the asymptotic
behavior of the local, and thus global, stiffness matrix for large values of s. In this case, the
elements of the local stiffness matrix relating the tractions and displacements on the top
surface of a layer become uncoupled from those on the bottom,
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(14)

where the elements of the submatrices K1*t and K~2k depend only on material properties of
the layer and the sign of the transform variable s (Pindera and Lane, 1993a). The elements
of the submatrix K~t are precisely the same as the corresponding elements for the local
stiffness matrix of a homogeneous half plane having the same elastic properties as those of
a given layer. The limiting behavior of the kernel H II (s) is thus

(15)

where sgn (s)H~1 is the first element of the inverse of the submatrix [Ktn Using eqn (15),
the kernel H j ) (s) in eqn (13) is separated into singular and regular parts, sgn (s)Hfl and
H?l(S) = H 11 (s)-sgn(s)Hfh respectively, yielding

The asymptotic form of the local stiffness matrix, eqn (14), reveals that the asymptotic
relation between the transformed displacements and tractions on the surface of a layered
half plane is the same as that obtained for a homogeneous half plane having the properties
of the surface layer. In view of this, a relation between the Fourier and finite Hilbert
transforms of the contact pressure can be derived by considering lim=~o [(8j8x)w(x, z)] of
the homogeneous half plane problem (Gladwell, 1980, p. 210),

-i I+':tc . 1 Ie p(t)
~- sgn (s)p(s) e- 1SX ds = - -- dt
~-oo n -c t-x

(17)

reducing the dominant part of the singular integral in eqn (16) to an integral containing a
Cauchy kernel. Using the odd-even properties of the regular kernel, integration limits may
be changed and the following form of eqn (16) is obtained:

d H* Ic p(t) 1 1+ 00 Ic-d w) =_11 . ~-dt+- ltil(S)P(t) sin (t-x)sdtds.
x n -c t x n 0 -c

(18)

A numerical collocation technique to solve singular integral equations of the above
form has been developed by Erdogan (1969) and Erdogan and Gupta (1972). The method
assumes that the unknown function (in this case the contact pressure) can be expanded in
a series of orthogonal polynomials which are multiplied by a suitable weight function. The
choice of the appropriate polynomials is determined by the nature of the singularities and
the form of the weight function is determined by the characteristic distribution of the
contact pressure. For flat punch contact problems, Chebychev polynomials of the first kind
are used.

The polynomials are of order n, where each term is multiplied by an influence
coefficient. Since the polynomials are defined on an interval between plus and minus one,
suitable normalization must be applied to the contact dimension. To determine the n
unknowns generated by the polynomial approximation, the contact region is divided into
n+ I discrete intervals and a system oflinear equations involving the kernel of the integrand
and the known displacement gradients is assembled. A Gauss quadrature integration
scheme is employed to evaluate the kernels. If the order of the integrator is greater than or
equal to n, and the location of the integration points coincides with the zeros of the
orthogonal polynomials, the integration is exact. Once the kernels are evaluated, the system
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of equations is numerically inverted to obtain the influence coefficients, and thus the
pressures at the n collocation points. The accuracy of the approximation is limited only by
the number of collocation points used. The contact pressure, p(x), is approximated by,

F(x) n
p(x) = , F(x) = L B;T;(x), T;(x) = cos (i8), cos 8 = x (19)
~ ;~o

where T;(x) is a Chebychev polynomial of the first kind, I/~ is the associated weight
function, and the B;s are the unknown influence coefficients. Consequently, Erdogan shows
that eqn (18) can be reduced to the following system of linear equations,

(20)

where

and the inhomogeneous term is given by the slope of the punch,f(xr ) = (d/dx)w l(xr)IHrl'
which for a flat punch is zero. The regular kernel Ko(x" tk) in eqn (20),

I 100 IfL (s) .Ko(x, t) = - -H* sm (t-x)s ds
7t 0 II

is symmetric with respect to r = n12, and is therefore evaluated only from r = 1 to (nI2).
However, the system of equations represented by eqn (20) involves only (n - I) equations
for n unknowns, therefore an additional equation is needed. The final equation comes from
the load condition, where the pressure under the punch must integrate to give the total
applied load,

(21)

Solution of the system of equations given by eqns (20) and (21) provides the unknown
values of F(t) at the collocation points tk in eqn (19) which are needed to determine the
unknown pressure distribution in the contact region.

NUMERICAL INTEGRATION OF THE KERNEL Ko(x" td

The most time-consuming aspect of solving the system of equations formed by eqns
(20) and (21) is the calculation of the kernel Ko(x" tk ), since it involves an "infinite"
integration with respect to the transform variable s. Considerable effort has gone into
improving the numerical efficiency of this integration, which is based on the original
algorithm developed by Pindera (1991). The calculation of Ko(x" td involves only two
terms from the global stiffness matrix, namely H II (s) and its asymptotic limit Hrl' All
material and geometric features of a configuration are completely characterized by these
two terms. H II (s) is obtained by inverting the global stiffness matrix at every value of s
throughout the integration interval, whereas Hrl is independent of the transform variable
and is obtained from the inverse of the submatrix [KNJ, which obviously is carried out just
once.

The kernel Ko(x" td can be viewed as a combination of two terms. The first term,
sin (tk-Xr)S, is periodic with the period 2nl(tk-xr), where tk and Xr are given by eqn (20).
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Fig. 2. Typical examples of the sinusoidal and decaying terms in the integrand of Ko.

The second term, H~ I (s)1Htb has a functional form and a convergence rate (with respect
to s) that depend on the geometry and material configuration of the half plane. Figure 2
illustrates typical examples of both terms. The two terms depicted in Fig. 2 combine to
produce a kernel which oscillates as it converges. The kernel must be evaluated for every
distinct combination of tk and x" with r ranging from 1 to (n12 +1), and k ranging from I
to n, where n is the number of collocation points. This represents (n 2/2+n) integrations
over the s domain. The integration is performed by dividing the integrands into increments
of variable length, and using Gauss quadrature on each interval. By appropriately selecting
the width of each integration interval to coincide with the "zero's" of the oscillation, the
accuracy and efficiency of the integration is greatly improved.

The sinusoidal terms in the integrands of the kernels have different periods, depending
on the values of k and r. Certain combinations of k and r produce a high frequency of
oscillation, requiring a small integration interval, while others combine to produce a low
frequency. The rate of convergence of the kernel depends mainly on the ml(s)IHfl term,
therefore the individual kernels are integrated simultaneously and truncated at the same
value of s. The Gaussian quadrature integration scheme is performed by mapping the
individual integration intervals onto the interval [- 1, + 1], using the following trans
formation of the variable s,

2s = (b+a)+(b-a)sd

where a and b are the lower and upper limits of integration, respectively. Once the function
has been mapped onto the new interval, it is evaluated at a number oflocations (depending
on the accuracy desired) given by Sd, and multiplied by the corresponding Gauss weight
factor. Values of Sd and their corresponding weights can be obtained from tables in various
references (Abramowitz and Stegun, 1965). The value of the kernel (between the limits of
a and b) is then obtained by summing the individual contributions. This process is repeated,
incrementing a and b, until Koconverges.

Since the integration intervals are variable (depending on k and r), the locations of the
S<JS in each interval are different, requiring the integrand to be evaluated numerous times
for different combinations of k and r. If a 64 point integration scheme is used, a single
integration period requires the kernel to be evaluated at 64e(n 2/2 +n) locations, and often
thousands of integration intervals are required to achieve convergence. Evaluating the
term H II (s) (appearing in the integrand) requires developing "s-dependent" local stiffness
matrices, assembling them into a global stiffness matrix, inverting the global stiffness matrix,
and extracting its (1,1) element. For configurations having many layers this process is
numerically intensive.

To avoid having to calculate H II (s) repeatedly, a cubic spline interpolation routine is
employed. The function H II (s) is evaluated along s at evenly spaced intervals, and the slope
of the function is then calculated between the intervals. If the slope is too large between
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any two points (i.e. the function is changing rapidly), the interval is further divided and
H 1l (s) and its slopes are calculated at the new subdivisions. The discrete values and slopes
are stored in arrays to be used by an interpolation subroutine. Thus, the values of H 11 (s)
are determined for any s simply by invoking the subroutine. Using an interpolation routine,
the kernel is evaluated by calculating H II (s) a few hundred times, as opposed to thousands
(even hundreds ofthousands) of times when evaluated directly. Because H I1 (s) is a relatively
smooth function, there is virtually no loss of accuracy in using the interpolation routine.
The kernel is continuously monitored throughout the integration, and truncated only if a
"small" change in its value is observed after a complete cycle of integration. The algorithm
used to implement the integration of the kernels is described in more detail in Urquhart
(1993).

PREDICTING SEPARATION

When a flat punch indents a layered half plane in the absence of friction and surface
bonding, there is no physical mechanism to ensure that the punch remains in full contact
with the half plane. Full contact occurs only for a limited range of geometric and material
parameters. Outside of this range, certain combinations of parameters lead to regions of
separation between the punch and the half plane. Separation will occur if the normal stress
between the punch and the half plane predicted by the solution is tensile at any point in the
contact region, since there is no bonding agent to ensure contact. Separation can occur in
either one or two regions of the contact area (Shield and Bogy, 1989). If separation occurs
in one region, the contact is referred to as "two-region" contact because there are two
regions of positive contact between the punch and half plane. Similarly, separation in two
regions is referred to as "three-region" contact.

The physical quantities of interest in a flat punch contact problem are the contact
pressure distribution, and the separation parameter space. The parameter space illustrates
the combinations of various physical parameters that form boundaries between full, two
region and three-region contact solutions. The parameter space is constructed by using an
iterative bisectional root finding algorithm that solves eqn (18) for the contact pressure
with respect to variations in material and geometric parameters (Urquhart, 1993). For a
configuration with a given combination of physical parameters, eqn (18) is solved and the
form of the contact pressure profile is examined to determine the nature of the contact (full,
two- or three-region). The root finder continues to adjust the physical parameters until the
boundaries of the separation parameter space are found. The present formulation is limited
to the determination of separation boundaries between full and two-region, and full and
three-region contact solutions. The third boundary between two-region and three-region
contact solutions considered by Shield and Bogy for isotropic layered half planes will be
considered at a later time.

There are two non-dimensional parameters that affect separation in isotropic con
figurations as discussed by Shield and Bogy (1989). The geometric parameter IX is the ratio
of the punch half-width to the height of the surface layer (or layers) bonded to the half
plane (i.e. C( = cjh). The material parameter Pis the ratio of the equivalent elastic modulus
of the top layer (or layers) to that of the half plane (i.e. p= EdEh ). In anisotropic
configurations, however, separation cannot be characterized by a single material parameter.
However, one physically significant material parameter that affects separation in anisotropic
fibrous composites is the fiber volume fraction, Dr. In anisotropic configurations, therefore,
a parameter space is constructed by varying the fiber volume fraction in conjunction with
any geometric parameters, and using a micromechanical model to calculate the equivalent
material properties of the individual layers prior to solving eqn (18).

RESULTS

The effect of varying material and geometric parameters on the separation between a
flat punch and a layered medium can best be illustrated by considering a configuration
consisting of a single isotropic layer bonded to a homogeneous supporting half plane.
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Fig. 3. Single isotropic layer bonded to an isotropic half plane: (a) separatIOn spa,,'e showing
comparison between current analysis (--) and the results of Shield and Bogy {1989} (---); (b)
pressure profiles corresponding to points 1,2 and 3; (c) pressure profiles corresponding to points

3,4 and 5.

Variations in the two parameters (J, and 13 result in deviations from the characteristic pressure
profiles associated with each of the three types of contact mentioned above. Figure 3(a)
illustrates the separation parameter space (1!(J, versus 13) for such a configuration. The
parameter space is compared with results obtained by Shield and Bogy (1989). The curves
in the parameter space represent the combinations of parameters that separate the zones
where full, two- and three-region contact is predicted. The intersection of these three lines
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represents the unique combination where all three solutions exist simultaneously, and is
designated the "triple point" (point 3) by Shield and Bogy (1989). Moving away from the
triple point in the parameter space will result in either full, two- or three-region contact,
depending on the direction travelled. The solution used by Shield and Bogy provides the
boundary between the two- and three-region contact zones, whereas the method used in
this study does not. The displacement boundary condition at the surface employed in our
solution prescribes complete contact between the flat punch and the half plane. Therefore,
the method used here allows contact pressure predictions only within the full contact zone,
providing separation divisions from the full to two-, and from the full to three-region zones,
but not from the two- to three-region zones. Comparing the results of the present analysis
for the boundaries separating the full and two-region, and full and three-region contact
solution spaces with those obtained by Shield and Bogy, it should be noted that the minor
differences observed are most likely due to the different methods of numerical integration
of the bounded part of the kernel in eqn (I8). Both investigations arrive at the same
governing equation for the contact pressure distribution, eqn (I8), which is solved using
the same polynomial expansion for the contact pressure and the solution technique of
Erdogan and Gupta.

Figure 3(a) indicates that multiple region contact is predicted only in regions where 13
is significantly greater than one, indicating that separation in isotropic configurations occurs
only when the surface layer is sufficiently stiffer than the substrate. Similarly, for the
employed range of 13, multiple region contact exists only when the lie< parameter is less
than two, or when the width of the flat indenter is greater than the thickness of the surface
layer.

Figures 3(b) and 3(c) illustrate pressure profiles generated with combinations of e< and
13 that correspond to the five symbols shown in the parameter space of Fig. 3(a). These
profiles were generated with 96 collocation points and normalized with respect to the
applied load and the half-width e of the indenter, ensuring that xle = 1.0 corresponds to
the edge of the contact region and the corner of the punch. The profiles corresponding to
the points 1-3 along the perimeter between the full and two-region contact solutions exhibit
compressive stresses throughout the entire contact region, but are on the verge of becoming
tensile in the center of the punch, implying a two-region contact solution. Similarly, the
profiles corresponding to the points 3-5 along the perimeter between the full and three
region contact solutions are on the verge of predicting three-region contact. The profile
corresponding to point 3 is generated with the unique combination of parameters given by
the "triple point" and exhibits no stress at the center of the punch. Changing either Cl: or 13
will alter this pressure distribution, and depending on how they are changed, either full,
two or three-region contact will result.

In anisotropic configurations consisting of fiber-reinforced composite laminae, the
orientation ofan anisotropic lamina has a significant effect on the resulting contact pressure
and separation parameter space due to the variations in the effective in-plane material
properties that occur when a lamina is rotated through an angle in the plane perpendicular
to the loading direction. The effect of off-axis orientation can best be illustrated by con
sidering the configuration depicted in Fig. 4(a), consisting ofa single graphite--epoxy lamina
bonded to a homogeneous half plane. The separation space is constructed with respect to
the two non-dimensional parameters, e< and the fiber volume fraction Vf. The fiber volume
fraction describes the volumetric ratio of fiber material to matrix material where Vf = 0.0
implies a homogeneous material consisting ofmatrix only, and Vf = 1.0 implies fiber material
only. Both of these extremes (Vf = 1.0 and Vf = 0.0), may be physically impractical in a
fibrous composite, however they represent a valid range of material parameters over which
the contact pressure solution can be determined in an effort to study the separation
phenomena. The material properties of a lamina increase with fiber volume fraction
(assuming the stiffness of the fiber is greater than the matrix), hence the material property
mismatch between the surface and the support increases with Vf as well. The micromechanics
model called the method of cells is used to calculate the effective material properties of a
lamina for a given fiber volume fraction (Aboudi, 1991). Material properties are given in
Table I for the graphite fiber, the epoxy matrix and the isotropic foam half plane.
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Fig. 4. (a) Single anisotropic layer bonded to a compliant isotropic half plane. (b) Separation
parameter space showing the effects of ply orientation and fiber volume fraction on the boundaries

between full and two-region, and full and three-region, contact solution zones.

Figure 4(b) depicts the separation parameter space for three separate ply orientations,
0, 45 and 90°. The solid, broken and dotted lines represent the boundaries between zones
of full contact and two-region and three-region contact solutions for the three off-axis ply
orientations, and the triple points for each case are given by the corresponding symbols.
Since the ply orientation does not affect the through-the-thickness elastic modulus of the
lamina, variations in the through-the-thickness elastic modulus mismatch between the
surface layer and the supporting half plane are due solely to the fiber volume fraction

Table 1. Various fiber and matrix properties

Ell E22 E33 Gl2 G" G23

Material (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) Vl2 Vl 3 V 23

Glass fiber 90.5 90.5 90.5 37.0 37.0 37.0 0.220 0.220 0.220
Graphite fiber 233.0 23.0 23.0 9.0 9.0 8.2 0.200 0.200 Q.400
Boron fiber 400.0 400.0 400.0 166.8 166.8 166.8 0.200 0.200 0.200
SCS-6 SiC fiber 400.0 400.0 400.0 160.0 160.0 160.0 0.250 0.250 0.250
Epoxy matrix 5.35 5.35 5.35 1.98 1.98 1.98 0.350 0.350 0.350
AI-6061 matrix 72.4 72.4 72.4 27.2 27.2 27.2 0.333 0.333 0.333
Ti-6AI-4V matrix 110.0 110.0 110.0 42.0 42.0 42.0 0.310 0.310 0.310
Isotropic foam 0.862 0.862 0.862 0.324 0.324 0.324 0.330 0.330 0.330

(Fig. 4)
Isotropic foam 9.05 9.05 9.05 3.39 3.39 3.39 0.333 0.333 0.333

(Fig. 6)
Isotropic foam 0.110 0.110 0.110 0.045 0.045 0.045 0.230 0.230 0.230

(Fig. 7)
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Fig. 5. Separation parameter space for a single 90° graphite-epoxy ply bonded to a compliant
isotropic half plane showing the effects of different values of the half plane's Young's modulus and
fiber content of the graphite-epoxy ply on the boundaries between full and two-region, and full and

three-region, contact solution zones.

variation. The considerable difference between the three boundaries is a result of the
variation in the in-plane material properties of the surface lamina brought about by rotating
the lamina through the corresponding angles in the plane perpendicular to the loading
direction. A lamina's resistance to local bending deformation is a function ofthe orientation
of the fibers in the plane of the lamina. As a lamina bends under the application of load
transferred through a flat punch, it tends to pull away or separate from the punch, pivoting
on the corners. A 90° lamina offers the least amount of resistance to these local bending
effects, and therefore a smaller fiber volume fraction (material property mismatch) is
required to initiate separation. This condition is reflected by the relative shift between the
three separation zones along the vraxis, and by the fact that the separation zones for the
900 lamina occupy a greater percentage of the parameter space than either the 0 or 45°
cases.

The effect of varying the through-the-thickness material property mismatch is illus
trated by considering two half plane configurations, both of which consist of a single
anisotropic layer bonded to a homogeneous, isotropic supporting half plane. In the first
configuration, a 90G surface lamina of graphite-epoxy is bonded to a homogeneous half
plane whose elastic modulus is varied. Separation spaces are presented for various half
plane moduli which range from 0.69 to 1.72 kPa (0.10-0.25 Msi). In the second case the
supporting half plane modulus is fixed at 8.96 kPa (1.30 Msi), and three typical fibrous
composite materials, glass-epoxy, boron-aluminum and silicon carbide-titanium, are used
for the surface lamina. In both cases, the values of the half plane moduli were chosen so
that separation would occur within the [0, 11 range of fiber volume fraction. The separation
spaces for 0 and 90 0 surface laminae are presented for each configuration, with respect to
the non-dimensional parameters l/a and Vf. The material properties of the constituents in
the three composite material systems are included in Table 1.

Figure 5 illustrates the variations in separation space for a 900 graphite-epoxy lamina
bonded to a homogeneous supporting half plane with an elastic modulus that is varied
incrementally from 0.69 to 1.72 kPa (0.10-0.25 Msi). The moduli of the different supporting
half planes are listed with their corresponding symbols. The location of the symbols in the
separation space correspond to the "triple-points". The separation zone for the case
Eh = 0.69 kPa (0.10 Msi) represents the configuration that is most susceptible to separation,
as is evident by the percentage of area it occupies in the parameter space. The separation
tendency is due to the large material property mismatch between the surface and substrate.
As the modulus of the half plane is increased, the mismatch decreases along with the
separation tendency, resulting in a right-hand shift in the separation curves.
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Fig. 6. Separation parameter space for glass·~poxy. boron-aluminum and silicon carbide-titanium
plies bonded to a homogeneous half plane showing the effects of ply orientation and fiber content
on the boundaries between full and two-region, and full and three-region, contact solution zones.

Figure 6 depicts the separation parameter spaces for glass-epoxy, boron-aluminum
and silicon carbide-titanium laminae with 0 and 90° fiber orientations, bonded to an
isotropic supporting half plane with a fixed elastic modulus, Eh , of 8.96 kPa (1.30 Msi).
Only the 90° separation space is shown for glass-epoxy, because the 0° separation space
lies outside the range of parameters. For this lamina, full contact is predicted for almost
every combination of parameters, with the exception of a small separation zone near the
right-hand side of the parameter space. The material properties of the glass-epoxy,
especially through the thickness, are very near those of the half plane, resulting in the small
separation zone.

The separation space for the boron-aluminum lamina bonded to the isotropic half plane
is obtained for both 0 and 90° configurations. The triple points are given by the circular
symbol for the 90° case and the square symbol for the 0° case. The area above the triple
points and inside the separation zone corresponds to two-region separation, whereas the
area below the triple points inside the separation zone corresponds to three-region separ
ation. There is a small, but noticeable difference in the separation zones due to the fiber
orientation, as would be expected. When the volume fraction is one or zero, the lamina is
isotropic and the ply orientation has no effect on the contact pressure, therefore, the
separation zones for the 0 and 90° lamina converge to the same l/lX value. This does not
occur for the graphite-epoxy lamina considered in Fig. 4(b). The reason for this is that the
graphite fiber is transversely isotropic, and even though the material is homogeneous when
Vf = 1.0 (all fiber), a rotation of the ply changes the in-plane material properties. Further,
the through-the-thickness material property mismatch for the boron-aluminum lamina is
significantly higher than that of the glass-epoxy case because the boron--aluminum has a
larger through-the-thickness elastic modulus. Consequently, the separation zones are shifted
to the left in the parameter space indicating a greater separation tendency. The separation
zones occupy a large percentage of the area in the parameter space, whereas in the glass
epoxy configuration this percentage was exceedingly small.

The separation zones for the silicon carbide-titanium (SiC-Ti) lamina bonded to the
isotropic half plane are also obtained for both 0 and 90° configurations. The triple points
lie outside the parameter space and are not shown. The SiC-Ti lamina has the highest
through-the-thickness modulus of the three materials considered, therefore, it also has the
greatest separation tendency. This separation tendency is evident in the large percentage of
the area occupied by the separation zones in the parameter space. Separation is predicted
throughout the range of fiber volume fraction for much of the corresponding IX range. If
the elastic modulus of the half plane were decreased, the separation tendency would increase
and the separation zones would shift to the left in the parameter space. In contrast, an
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Fig. 7. (a) Laminated half plane geometry and stacking sequence for a 90"/1/ ±45° graphite---epoxy
laminate bonded to a homogeneous half plane. (b) Separation space showing the effects
of a compliant subsurface layer's thickness and fiber content of the graphite---epoxy plies on the

boundaries between full and two-region, and full and three-region, contact solution zones.

increase in the elastic modulus of the half plane would shift the separation zones to the
right in the parameter space.

The last application of the outlined methodology focuses on multilayered composite
laminates that are typically constructed by bonding together a number of laminae with
various material properties and fiber orientations. The resulting laminate can exhibit effec
tive material properties that differ from those of the individual plies. In the process of
assembling the individual laminae, adhesives such as epoxy, which are typically isotropic
and have a low elastic modulus, are used to bond the layers firmly together. The overall
material properties of the laminate can be affected by the presence of the adhesive, especially
if the laminates are thin and the material properties of the adhesive are dramatically
different from those of the individual plies. The effect of a compliant subsurface layer of
variable thickness on the contact response of an anisotropic composite half plane is inves
tigated next, where the compliant layer is used to model the presence of the bonding agent.
A similar study has been provided by Pindera (1992) for round punch indentation.

Figure 7(a) depicts a layered half plane consisting of a three-ply composite laminate
bonded to a homogeneous supporting half plane. The laminate consists of three graphite
epoxy plies, with a stacking sequence of 90°/ + 45°/ - 45°, where the 90° ply is bonded to
the +45 0 ply with a compliant epoxy layer of variable thickness. The thickness of the bond
is designated by I, and the thickness of the individual graphite-epoxy plies as h. The
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laminate is indented by a rigid flat punch and the resulting separation space is investigated
as a function of the thickness I of the compliant layer. Separation parameter spaces are
compared for three configurations with distinct compliant layer thickness, zero (non
existent), 20 and 40% of h, designated by loa, [20 and 140 , respectively. The parameter space
consists of two non-dimensional parameters, namely the volume fraction and the ratio of
the overall thickness of the surface laminate to the half-width of the punch (Hie).

Figure 7(b) depicts the separation space for the composite half plane for the three
case, loa, 120 and 140 , Of the three cases considered, separation zones generated for the
configuration with no compliant layer (designated by the solid line) occupy the greatest
amount ofarea in the parameter space, indicating that there is a greater chance ofseparation
in the absence of a compliant layer. As the thickness of the compliant layer is increased,
the separation zones shift to the right and contract along the Hie axis, indicating a reduction
in the separation potential due to the reduction in the overall material properties of the
surface laminate relative to the underlying half plane.

SUMMARY AND CONCLUSIONS

The effects of off-axis ply orientation, material property mismatch, and the thickness
of subsurface compliant layers on the incipient separation phenomenon observed in fric
tionless flat punch contact problems involving anisotropic layered half planes can be
efficiently investigated using the methods outlined in this paper. When a flat punch indents
a homogeneous half plane, the contact pressure has a characteristic profile that predicts
full contact and exhibits singularities at the corners of the punch. However, deviations in
this characteristic profile are observed in layered halfplanes. The solution predicts complete
contact between the punch and the layered structure for only a limited range of geometric
and material parameters. Outside this range separation occurs in either one, or two areas
of the contact region as discussed by Shield and Bogy for half planes laminated with
isotropic layers. The combination of parameters that lead to separation are typically
illustrated in a separation parameter space. For isotropic layered half planes, two para
meters are employed to describe separation, namely a. which describes the ratio of punch
half-width to surface layer thickness, and f3 which describes the elastic modulus mismatch
between surface layers and their supporting half plane. In anisotropic layered half planes
constructed with fiber-reinforced composite layers, on the other hand, the off-axis orien
tation and the fiber content of a layer control the through-the-thickness and inplane
properties and thus are the relevant parameters to employ in constructing separation spaces.

In this investigation, the parameters :x, and Vf were varied in conjunction with off-axis
ply orientation in configurations consisting of a single anisotropic layer bonded to a
supporting half plane. Separation spaces showing the boundaries between full and two
region, and full and three-region, contact solution zones were presented for 0, 45 and 90"
configurations. Varying the orientation of an anisotropic ply changes its resistance to
bending and consequently influences the pressure profiles and separation spaces. Due to
the orientation of the fibers with respect to the loading plane, a Dc ply has the greatest
resistance to bending. Consequently, separation is less likely to occur for a DC lamina
bonded to a supporting half plane. As the ply is rotated through an angle, its resistance to
bending is reduced (depending on the degree of anisotropy) and the likelihood of separation
is increased.

The effect of a compliant subsurface layer in a 90°1 +45c1- 45° graphite-epoxy lami
nate bonded to an isotropic half plane was also investigated to demonstrate the ease with
which multilayered configurations can be handled with the outlined approach. A separation
space was provided that illustrates the effect of varying the thickness of a compliant layer
on the boundaries separating full and two-region, and full and three-region, contact solution
zones in configurations with different fiber content. The presence of a compliant subsurface
layer effectively reduces the overall material properties of a laminate. Thus increasing the
thickness of the compliant layer reduces the elastic modulus mismatch between the laminate
and the supporting half plane in the direction of the applied load, decreasing the likelihood
of separation.
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